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Abstract

Ventricular arrhythmias (VAs) can lead to sudden car-
diac death if not promptly managed. Implantable car-
dioverter defibrillators (ICDs) typically deliver therapy
after VA onset, leaving a limited window for interven-
tion, and can lead to adverse effects such as inappropri-
ate shocks. This study investigates predicting VA onset
using intracardiac electrograms (EGMs) recorded by sub-
cutaneous ICDs immediately preceding VA. The training
set contained 10,913 EGM recordings, including 236 up-
stream EGMs recorded before VA onset, while the test set
included 3,712 recordings with 51 upstream EGMs.

A deep learning model, pretrained on a large ECG
dataset, achieved strong performance with a mean AUROC
of 0.95 ± 0.01 and an AUPRC of 0.62 ± 0.06 in predicting
VA on the test set. Temporal analysis (up to 37 seconds
before VA onset) revealed that the proximity of upstream
EGMs to VA onset did not affect AUROC, indicating that
earlier detection could provide enough time for interven-
tion before the arrhythmia onset.

Although the model demonstrated high sensitivity (0.89
± 0.02) and specificity (0.93 ± 0.02), improvements in pre-
cision (0.15 ± 0.03) are necessary. These findings high-
light the potential of predicting VA onset from intracardiac
EGMs, allowing timely therapeutic intervention before VA
fully develops.

1. Introduction

Ventricular arrhythmias (VAs), including ventricular
tachycardia (VT) and ventricular fibrillation (VF), are life-
threatening disturbances in cardiac rhythm that can lead to
sudden cardiac death if not promptly treated. Implantable
cardioverter defibrillators (ICDs) have become the corner-
stone of secondary prevention in patients with a history
of sustained VA, as well as in selected high-risk popula-

tions for primary prevention [1]. These devices continu-
ously monitor the heart rhythm and deliver therapeutic in-
terventions—such as anti-tachycardia pacing or defibrilla-
tion—to terminate arrhythmias and restore normal rhythm.

Despite their effectiveness, current ICD systems func-
tion in a reactive manner, delivering therapy only after the
onset of a VA episode. This often leaves a narrow win-
dow for response and can be associated with adverse out-
comes, including inappropriate shocks, patient discomfort,
and psychological burden [2]. As such, there is a grow-
ing need for predictive models that can anticipate the on-
set of VAs with sufficient lead time to enable earlier, more
personalized interventions—ideally before the arrhythmia
fully manifests.

In this work, we explored the predictive potential of in-
tracardiac electrograms (EGMs) recorded by subcutaneous
ICDs, focusing on the period immediately preceding VA
onset. Utilizing deep learning techniques, we aim to detect
early indicators of impending arrhythmias. The ability to
predict arrhythmia onset offers valuable insights into the
mechanisms of VA initiation and provides an opportunity
for timely therapeutic intervention. We hypothesized that
deep learning can uncover novel features in intracardiac
EGMs prior to an arrhythmic event, enabling the predic-
tion of VA onset.

2. Dataset

Intracardiac electrograms (EGMs) from patients under-
going subcutaneous implantable cardioverter-defibrillator
(ICD) implantation (Boston Scientific, Boston, MA) at
Emory University Hospital and Stanford Hospital were
captured. All metadata and EGMs were exported from
a remote monitoring database. For patients who experi-
enced a VA event, the corresponding portion of the EGM
was segmented and annotated. Segments recorded prior
to the VA event—typically during sinus rhythm or atrial
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fibrillation—were labeled as ”upstream”. Segments dur-
ing the VA event itself were labeled as ”downstream”, and
recordings from patients without a VA event present at that
time were labeled as ”presenting rhythm”. Examples of
upstream, downstream EGMs are shown in Figure 1.
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Figure 1. Example of a segmented electrogram (EGM)
recorded using an implantable cardioverter-defibrillator.
The upstream segment corresponds to the EGM recorded
prior to the onset of a ventricular arrhythmia, while the
downstream segment captures the episode of ventricular
fibrillation.

Recordings from two independent centers were included
in the study. For model development (training and valida-
tion), we used data from Emory University Hospital, com-
prising 10,913 EGM segments from 335 patients. Among
these, 236 segments from 93 patients included upstream
recordings preceding a VA episode. For independent eval-
uation, we used a test set from Stanford Hospital, which in-
cluded 3,712 EGM recordings from 209 patients. Of these,
51 recordings from 24 patients included upstream EGMs.
All recordings are sampled at 64 Hz.

The ICD device was configured to export a 12-second
segment of the presenting rhythm when no VA event is de-
tected. In contrast, when a VA event occurs, the duration
of the upstream recording varies. In the Emory dataset,
the upstream electrograms have a median duration of 35
seconds (interquartile range: 32–36 seconds), while in the
Stanford dataset, the median duration is 36 seconds (IQR:
32–37 seconds).

3. Methods

Our objective was to predict the onset of VA from
EGMs. To achieve this, we used both the upstream elec-
trogram and the presenting rhythm, framing the task as a
binary classification problem. The upstream electrogram
was labeled as 1, indicating that it is followed by a VF/VT
episode within the next few seconds. In contrast, the pre-
senting rhythm was labeled as 0, as it is not followed by a
VA episode. We performed 5-fold cross-validation on the
Emory dataset, ensuring that the data were split at the pa-
tient level to avoid any patient overlap between the folds.
The number of recordings in each validation fold, along
with the prevalence of upstream electrograms, is summa-
rized in Table 1. Finally, we tested our approach on an

independent Stanford dataset, aggregating the predictions
from all five models corresponding to five folds and com-
puted the mean performance across the folds.

Table 1. Summary of 5-Fold Cross-Validation Splits.

Fold number Validation size Upstream EGMs (%)
1 2,160 54 (2.5)
2 2,544 51 (2.0)
3 1,759 51 (2.9)
4 2,151 47 (2.2)
5 1,811 49 (2.7)

3.1. Deep Learning Algorithm

We pretrained a deep learning model [3] on a large
arrhythmia classification dataset, comprising over 86,000
recordings from the 2021 PhysioNet Challenge [4]. For
VA/VT prediction from intracardiac EGMs, we reused the
convolutional backbone from this pretrained model, which
includes the initial convolutional and residual blocks. To
adapt it for our specific task, we appended a custom output
head with adaptive max pooling, fully connected layers,
dropout, and batch normalization, followed by a sigmoid
activation to estimate the probability of a VA/VT event.
The model was then fine-tuned end-to-end on our EGM
dataset. In total, we trained five models corresponding to
the five folds for cross-validation.

All EGM recordings were preprocessed in the same
manner as the data used for the original Challenge 2021
model. We resampled the data to a frequency of 500
Hz, applied a bandpass filter (1–47 Hz), zero-padded the
recordings to a length of 8,192 samples, and performed
z-score normalization. Since the original network was de-
signed to handle a varying number of input ECG channels
(1–12), the input matrix to the model is always 12x8,192.
For our single-channel EGM data, we zero-pad the remain-
ing leads.

Since the length of the presenting rhythm is fixed at 12
seconds, we truncated all upstream recordings to the same
length. During training, we randomly selected segments
from the upstream recordings, while for inference, we slid
a 12-second window over the entire upstream recording
with a one-second step. This approach enables us to in-
vestigate whether specific 12-second interval preceding a
VA episode are more predictive than others. An example
of how we iterate through the upstream recording is shown
in Figure 2.

We trained the neural network for 30 epochs with an ini-
tial learning rate of 0.0001, using the Adam optimizer with
a learning rate scheduler that reduces the rate by a factor
of 0.1 every 6 epochs. As the loss function, we used a
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Figure 2. Segmentation of upstream EGMs into 12-second
windows. Upstream EGMs were generally longer than the
12-second input required by the neural network. During
inference, the upstream recording was divided into over-
lapping 12-second segments. This allowed us to evaluate
the predictive power of each segment based on its tempo-
ral proximity to the onset of a ventricular arrhythmia (VA)
episode.

Weighted Focal Loss, with weights assigned based on the
prevalence of the minority class (upstream EGM), calcu-
lated as the total number of EGMs divided by the number
of upstream EGMs.

To further investigate the regions on which the neural
network is focused, we applied gradient-weighted class ac-
tivation mapping (GradCam) to visualize the most impor-
tant areas of upstream EGM for VA prediction.

4. Results

The results of five-fold cross-validation on the Emory
dataset, evaluated using AUROC and AUPRC, are shown
in Table 2. Performance was calculated as the mean AU-
ROC and AUPRC across multiple 12-second segments ex-
tracted from the upstream portion of the recording, de-
pending on their temporal proximity to the onset of VA.
On the independent test set, we applied the five models
trained during cross-validation and computed the median
probability of VA; the results are reported in Table 3.

Table 2. Results of 5-fold cross-validation.

Fold AUROC AUPRC
1 0.94 (0.02) 0.56 (0.06)
2 0.95 (0.02) 0.57 (0.04)
3 0.90 (0.03) 0.61 (0.06)
4 0.89 (0.03) 0.51 (0.07)
5 0.95 (0.02) 0.75 (0.04)
Mean ± SD 0.92 ± 0.02 0.52 ± 0.06

On the test set, we also examined how the temporal
proximity of upstream EGMs to the onset of VA influ-
ences prediction performance. Figure 3 shows the sensi-
tivity and precision for different 12-second windows lo-

Table 3. Results on an independent test set.

Metric Mean ± SD
AUROC 0.95 (0.01)
AUPRC 0.62 (0.06)
Sensitivity 0.93 (0.03)
Specificity 0.94 (0.01)
Precision 0.15 (0.03)

cated between 0 and 25 seconds before the VA onset. Since
the length of upstream EGMs varies across cases (ranging
from 12 to 39 seconds), the figure also displays the preva-
lence of upstream segments available for each temporal
window, relative to all classified segments (presenting and
upstream combined).
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Figure 3. Precision and Sensitivity are reported for dif-
ferent 12-second segments of the upstream electrogram,
based on their temporal proximity to the onset of ventricu-
lar arrhythmia (VA), ranging from 0-12 seconds (immedi-
ately preceding VA) to 25–37 seconds. The gray bar plot
shows the prevalence of the upstream EGM class for each
time window.

Analyzing the saliency map generated using the Grad-
Cam approach reveals that the ST segment and T-wave
contribute more than other parts of the ECG to VA pre-
diction, as shown in Figure 4, where the gradient is color-
mapped.

5. Discussion and Conclusion

The results of the five-fold cross-validation demonstrate
strong performance for the prediction of VAs based on up-
stream electrograms (EGMs), with a mean AUROC of 0.92
± 0.02 and a mean AUPRC of 0.52 ± 0.06. These findings
highlight the effectiveness of the model in distinguishing
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Figure 4. Saliency map generated using the GradCam
approach, highlighting the regions of the upstream EGM,
specifically the QT segment and T-wave, that mostly con-
tribute to the prediction of ventricular arrhythmias.

between the upstream EGM preceding VA and the present-
ing rhythm (controls) across different temporal segments
of the EGM data. Furthermore, performance on the inde-
pendent test set showed slightly improved results, with an
AUROC of 0.95 ± 0.01 and an AUPRC of 0.62 ± 0.06,
indicating generalizability of the model to unseen data.

One of the key insights from this study was the evalua-
tion of the temporal influence of upstream EGMs on pre-
diction performance. As shown in Figure 3, the proxim-
ity of the upstream EGM to the onset of VA did not sig-
nificantly impact the sensitivity. However, larger fluctu-
ations were observed in the precision, which reflects the
false positive rate. Specifically, precision was lower for
segments farther from the VA onset, with performance im-
proving as the window approached the onset. The ob-
served decrease in precision for segments >18 seconds
from VA onset may be also explained by the lower preva-
lence of upstream EGMs in these time intervals.

These results are consistent with previous studies that
have shown the utility of machine learning models in pre-
dicting VAs from intracardiac EGM signals. For instance,
a similar study by Cha et al. (2024) [5] reported an AU-
ROC of 0.83 (95% CI: 0.79–0.89) for predicting VAs five
seconds prior to event onset. In contrast, our study offers
additional value by incorporating a more detailed temporal
analysis of upstream EGMs, extending up to 25 seconds
prior to VA onset. Our approach yielded a mean AUROC
of 0.95 ± 0.01, highlighting both an improvement in pre-
dictive performance and the potential for earlier detection.
The extended temporal window allows for the identifica-
tion of segments in the EGM data well before the onset of
VA, providing sufficient time for therapeutic intervention
before the arrhythmia fully develops.

The neural network’s emphasis on the QT segment and
T-wave, identified through gradient mapping suggests that
these features may be critical to the onset of VAs.

Although the model demonstrates promising perfor-
mance, several limitations must be considered. Firstly, the
dataset used in this study is relatively small, consisting of
335 subjects in the training set, with 28% exhibiting VA

episodes, and 209 subjects in the test set, with 11% exhibit-
ing VA episodes. While the challenge of limited data was
partially addressed by pretraining the deep learning model
on a larger ECG dataset, further validation with a more ex-
tensive dataset is necessary to confirm these findings. Ad-
ditionally, while the model performs well in detecting VA
events, the low precision (0.15 ± 0.03) suggests that fur-
ther improvements may be needed for clinical application.

In conclusion, the results of this study highlight the po-
tential of utilizing upstream EGMs for predicting ventric-
ular arrhythmias through a robust deep learning approach,
which achieved high sensitivity (0.93 ± 0.03) and speci-
ficity (0.94 ± 0.01). These findings could pave the way for
improved clinical strategies for early prediction of VAs, of-
fering the opportunity for timely therapeutic interventions
that may ultimately contribute to the prevention of sudden
cardiac death.
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T, Yildirim Y, Pecha S, Reichenspurner H, Bernhardt
AM. Prognostic impact of implantable cardioverter de-
fibrillators and associated adverse events in patients with
continuous flow left ventricular assist devices. Fron-
tiers in Cardiovascular Medicine 2023;10:1158248. URL
https://doi.org/10.3389/fcvm.2023.1158248.

[3] Nejedly P, Ivora A, Smisek R, Viscor I, Koscova Z, Jurak P,
Plesinger F. Classification of ECG using ensemble of resid-
ual CNNs with attention mechanism. In 2021 Computing in
Cardiology (CinC), volume 48. 2021; 1–4.

[4] Reyna MA, Sadr N, Alday EAP, Gu A, Shah AJ, Robichaux
C, Rad AB, Elola A, Seyedi S, Ansari S, Ghanbari H, Li Q,
Sharma A, Clifford GD. Will two do? Varying dimensions
in electrocardiography: The PhysioNet/Computing in Cardi-
ology Challenge 2021. In 2021 Computing in Cardiology
(CinC), volume 48. 2021; 1–4.

[5] Cha YM, Attia IZ, Metzger C, Lopez-Jimenez F,
Tan NY, Cruz J, Upadhyay GA, Mullane S, Har-
rell C, Kinar Y, Sedelnikov I, Lerman A, Friedman
PA, Asirvatham SJ. Machine learning for prediction
of ventricular arrhythmia episodes from intracardiac
electrograms of automatic implantable cardioverter-
defibrillators. Heart Rhythm 2024;21(11):2295–2302. URL
https://doi.org/10.1016/j.hrthm.2024.05.040.

Address for correspondence:

Zuzana Koscova; Dept of Biomedical Informatics, 101 Woodruff
Circle, Atlanta, GA 30322; zuzana.koscova@dbmi.emory.edu

Page 4


